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Abstract: The landslide susceptibility mapping (LSM) plays an important role in risk management. This study evaluated the 

predictive capabilities of three machine learning (ML) approaches applied to LSM: logistic regression (LR), random forests 

(RF), and artificial neural networks (ANN). The study was conducted in a mountainous region of Mariana/MG, Brazil. 

Initially, a point inventory with 364 landslides and 364 stable regions was randomly partitioned in a 70% training and 30% 

testing ratio for the models. Nine landslide conditioning factors (LCF), ranked by information gain (IG), were considered: 

slope angle (IG=0.486), geomorphology (IG=0.235), topographic wetness index - TWI (IG=0.138), lithology (IG=0.077), slope 

orientation (IG=0.067), topographic position index - TPI (IG=0.052), distance from drainage (IG=0.032), slope curvature 

(IG=0.029) and the distance from roads (IG=0.024). The evaluation of the area under the curve (AUC-ROC) and the 

classification efficiency rates in high (𝐸𝑅i
HS) and low (𝐸𝑅i

LS) susceptibility were used to compare the results of the approaches. 

The results demonstrated that although RF (AUC-ROC=0,947, ERi
HS=6,808, ERi

LS=0,030) slightly outperformed LR (AUC-

ROC=0,936, ERi
HS=5,695, ERi

LS=0,050) and ANN (AUC-ROC=0,934, ERi
HS=6,495, ERi

LS=0,060), all the approaches exhibited 

high predictive capability in identifying areas susceptible to landslides. 

Keywords: Machine learning; Predictive analysis; Landslide conditioning factors; Risk management. 

Resumo: O mapeamento da suscetibilidade a deslizamentos (MSD) desempenha importante papel na gestão de riscos. Este 

estudo avaliou as capacidades preditivas de três abordagens de aprendizado de máquina (ML) aplicadas ao MSD: regressão 

logística (RL), florestas aleatórias (FA) e redes neurais artificiais (RNA). O estudo foi realizado em uma localidade montanhosa 

de Mariana/MG, Brasil. Inicialmente, um inventário pontual com 364 deslizamentos e 364 regiões estáveis foi particionado 

aleatoriamente na proporção de 70% para treinamento e 30% para testagem dos modelos. Nove fatores condicionantes aos 

deslizamentos (FCD), hierarquizados pelo ganho de informação (GI), foram considerados: declividade (GI=0,486), 

geomorfologia (GI=0,235), índice topográfico de umidade - TWI (GI=0,138), litologia (GI=0,077), orientação das vertentes 

(GI=0,067), índice de posição topográfica - TPI (GI=0,052), distância da rede de drenagem (GI=0,032), curvatura das vertentes 

(GI=0,029), distância das vias (GI=0,024). A avaliação da área abaixo da curva (AUC-ROC) e das taxas de eficiência da 

classificação na alta (𝑇𝐸𝑖
𝐴𝑆) e na baixa (𝑇𝐸𝑖

𝐵𝑆) suscetibilidade foram utilizadas para comparar os resultados das abordagens. 

Os resultados demonstraram que, embora FA (AUC-ROC=0,947, 𝑇𝐸𝑖
𝐴𝑆=6,808, 𝑇𝐸𝑖

𝐵𝑆 =0,030) tenha resultados ligeiramente 

melhores que RL (AUC-ROC=0,936, 𝑇𝐸𝑖
𝐴𝑆 =5,695, 𝑇𝐸𝑖

𝐵𝑆 =0,050) e RNA (AUC-ROC=0,934, 𝑇𝐸𝑖
𝐴𝑆 =6,495, 𝑇𝐸𝑖

𝐵𝑆 =0,060), todas 

abordagens demonstraram alta capacidade preditiva em identificar áreas suscetíveis a deslizamentos. 

Palavras-chave: Aprendizado de máquina; Análise preditiva; Fatores condicionantes aos deslizamentos; Gestão de riscos. 
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1. Introduction 

Landslides are among the most recurrent geodynamic events worldwide, causing extensive environmental 

damage and significant socioeconomic losses annually (CHEN; YU; LI, 2018; HUANG; LI, 2011; TANOLI et al., 

2023; TZOUVARAS, 2021). In the context of Latin America and the Caribbean, Brazil had the highest number of 

recorded landslides with fatalities between 2004 and 2013 (SEPÚLVEDA; PETLEY, 2015). Most of these incidents 

are associated with intense rainfall concentrated during the summer months, particularly in mountainous areas 

with steep slopes (AHRENDT; ZUQUETTE, 2003; HIRYE et al., 2023; TIAGO DAMAS et al., 2017).  

Uncontrolled urban expansion in areas susceptible to geodynamic processes, coupled with the low 

construction standards of buildings and the lack of adequate public housing policies, emerge as key factors 

contributing to the high damage caused by landslides in Brazil. Therefore, it is of utmost importance that these 

areas have access to tools that consider landslide susceptibility, as well as risk and hazard assessments, to ensure 

efficient and safe land use as well as land cover management (FELL et al., 2008). In this context, landslide 

susceptibility maps are fundamental elements for the prevention and mitigation of landslide impacts, assisting 

planners, local administrators, and decision-makers in land use and land cover planning (KAVZOGLU; SAHIN; 

COLKESEN, 2014). 

Landslide susceptibility mapping (LSM) is a graphical assessment methodology that estimates the spatial 

probability of these events based on the local characteristics of the investigated region (ALEOTTI; CHOWDHURY, 

1999; FELL et al., 2008). Since the 1970s, numerous methodologies have been developed for this purpose 

(KAVZOGLU; TEKE, 2022; MAURIZIO; MARIA, 2012), which are usually classified into (ALEOTTI; 

CHOWDHURY, 1999; SOETERS; VAN WESTEN, 1996; YOUSSEF; POURGHASEMI, 2021): (I) direct 

geomorphological mapping (e.g. CARVALHO et al., 2013; SOBREIRA et al., 2013; ZIMMERMANN; BICHSEL; 

KIENHOLZ, 1986), where through expert interpretation, susceptibility classes are defined directly in the field, 

providing a simple and straightforward approach, but on the other hand, being highly subjective and dependent 

on the  experience of the experts (GUZZETTI et al., 1999; SOETERS; VAN WESTEN, 1996); (II) heuristic methods 

(e.g. BLAIS-STEVENS; BEHNIA, 2016; ELMOULAT et al., 2021; RUFF; CZURDA, 2008; STANLEY; 

KIRSCHBAUM, 2017), where the developed maps result from the prioritization and weighting of landslide-

triggering processes through map algebra, with the final outcome linked to the relevance assigned to each of these 

processes (FERNANDES et al., 2001; TSAI et al., 2013); (III) deterministic physically-based approaches (e.g. 

ARMAŞ et al., 2014; DO PINHO; AUGUSTO FILHO, 2022; JOVANČEVIC et al., 2018; MICHEL; KOBIYAMA; 

GOERL, 2014), based on the physical and mathematical relationships that define slope stability, correlating 

geometric data with geotechnical resistance parameters through simulations that integrate hydrological and slope 

stability models. Although they provide robust results, the complexity of obtaining and spatializing geotechnical 

parameters may limit the application of these models to smaller and more homogeneous areas (ALEOTTI; 

CHOWDHURY, 1999; YILMAZ, 2009); (IV) data-driven statistical methods, which estimate susceptibility based on 

the statistical relationship between landslide inventories and their conditioning factors, where susceptibility is 

estimated by identifying patterns in the spatial distribution of past landslides, systematically relating these records 

to the conditioning factors adopted by the models to predict new occurrences (CHACÓN et al., 2006; GUZZETTI 

et al., 1999; REICHENBACH et al., 2018). 

Various statistical approaches, including bivariate, multivariate, and more recently, machine learning 

techniques, have been applied in LSM in different parts of the world (e.g. ALEOTTI; CHOWDHURY, 1999; 

CALDERÓN-GUEVARA et al., 2022; COCO et al., 2021; EIRAS et al., 2021; MURILLO-GARCÍA; ALCÁNTARA-

AYALA, 2015; NOHANI et al., 2019; PIMIENTO, 2010; PRADHAN; SEENI; KALANTAR, 2017; SANTACANA et 

al., 2003; SOETERS; VAN WESTEN, 1996). Some of the most commonly used statistical methodologies include the 

likelihood ratio, information value, weights of evidence, favorability functions, discriminant analysis, logistic 

regression (LR), random forests (RF), and artificial neural networks (ANN) (COROMINAS et al., 2014). 

In this context, as noted by Barella, Sobreira, and Zêzere (2019), different LSM approaches have already been 

compared by various authors (e.g. AKGUN, 2012; CHEN et al., 2023; LIU et al., 2022; MERGHADI et al., 2020; 

PHAM et al., 2016; WANG et al., 2021; YOUSSEF; POURGHASEMI, 2021). Comparisons are important for 

identifying the advantages and limitations of each method, allowing researchers to select the most suitable 

approaches for the characteristics and specificities of the investigated regions, thus contributing to the 

advancement of methodologies and promoting the development of increasingly robust and refined approaches.  
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In recent years, publications addressing evaluations and comparisons between statistical machine learning 

(ML) methods for LSM have gained prominence (e.g. JENNIFER, 2022; LIU et al., 2022; OLIVEIRA et al., 2019; YI 

et al., 2019). Some of the advantages of these methods include objective statistical grounding, reproducibility, the 

ability for continuous updating, capacity to handle extensive datasets, and robust results (SIDUMO; SONONO; 

TAKAIDZA, 2022; YOUSSEF; POURGHASEMI, 2021). 

In this study, we conducted the training, evaluation, and comparison of three statistical ML techniques – RF, 

LR and ANN – to create landslide susceptibility maps in a mountainous region of Minas Gerais, located in 

southeastern Brazil. For this purpose, and for each technique used, we selected, sampled, classified, and filtered 

nine factors that influence landslides. The sampling was carried out through a landslide inventory and stable areas 

constructed via photointerpretation and fieldwork. At the end of the study, we assessed the validation rate of the 

susceptibility maps produced by the best model of each technique. Thus, the objective of this research focused on 

determining whether the chosen ML techniques are appropriate for modeling and mapping landslide susceptibility 

in the investigated region. 

2. Study Area 

The study area, illustrated in Figure 1 by the colored composition from the Sentinel-2 satellite on April 28, 

2020, is located in the southeastern portion of the Doce River Basin and southeast of the Mariana municipality, 

historically known as the first capital in the state of Minas Gerais, Brazil. Geographically, it extends between 

latitudes 20°22'S and 20°26'S, and longitudes 43°13'W and 43°18'W, encompassing, to the northwest, the rural 

district of Cachoeira do Brumado. 

 

Figure 1. Color composition from the Sentinel-2 satellite for the study area on April 28, 2020 

The climate is predominantly humid, with an average annual temperature of approximately 20°C and peak 

precipitation occurring during the summer months (SOUZA et al., 2006). According to the National Center for 

Monitoring and Natural Disaster Alerts (CEMADEN, 2024), the region has experienced intense rainfall, 

particularly in the first quarter of 2020, when heavy precipitation resulted from the influence of the South Atlantic 

Convergence Zone and the passage of cold fronts over the Doce River Basin (LOTT et al., 2021). As a consequence, 

a total of 191 mm of rainfall was recorded between February 6 and 13, with a peak of 51.6 mm occurring in the 

early hours of February 13. This event triggered 364 simultaneous and predominantly translational landslides, 

with volumes ranging from 11 to 68235 m³, which were identified through photointerpretation and fieldwork. 

Geologically, the area is composed of lateritic soils derived from gneissic rocks, with transitions in vegetation 

cover between the Cerrado and Atlantic Forest, featuring a diversity of grasses, cyperaceae, pastures, and forests 

of varying heights (BATISTA, 2006; SOUZA, 2004). The relief is predominantly mountainous, with regions 

exhibiting steep slopes and significant elevation changes. Altitudes range from 486 to 938 meters above sea level, 

with an average slope of approximately 21° and a maximum of 68°. Finally, the study area is close to a dense 
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network of natural drainage, including the Cachoeira do Brumado Stream. During intense rainfall events, this 

hydrographic network contributes to soil saturation, which is a significant triggering factor for landslides in the 

region. 

3. Materials and Methods 

This article presents and compares three ML approaches to produce landslide susceptibility maps. The 

processing, training, and testing of the models were conducted using Orange Data Mining 3.34.0 (DEMSAR et al., 

2013), while spatial data manipulation was conducted in a QGIS 3.12.3-București (QGIS DEVELOPMENT TEAM, 

2020). The SIRGAS2000 Datum was adopted in all geoprocessing stages. The data utilized included information 

collected from fieldwork, satellite images, a geological map at a scale of 1:25,000, and a topographic map at a scale 

of 1:10,000. The methodology adopted in the study is illustrated in Figure 2. 

 

Figure 2. Flowchart of the study presenting the adopted methodology 

3.1. Landslides and stable areas inventory 

In order to model landslide susceptibility using ML techniques, it is necessary to have an input dataset that 

includes records of past landslides and areas considered stable (without landslides). This dataset should sample 

the landslide conditioning factors (LCF) for the training and testing of the models (BORGA et al., 1998). In this 

context, we assume that new events are likely to occur in areas with characteristics similar to those of previously 

affected regions (ALEOTTI; CHOWDHURY, 1999; FELL et al., 2008; GUZZETTI et al., 1999). 

The development of landslide inventories can be conducted through a variety of techniques, ranging from 

fieldwork and historical record research to the photointerpretation of aerial images (GALLI et al., 2008; GUZZETTI 

et al., 2000). These methodologies can be applied either in isolation or in combination, providing an integrated 

approach to identifying landslides. Thus, through fieldwork and photointerpretation of satellite images, we 

constructed an inventory with 364 landslides points and 364 representative points of stable areas within the study 

area (Figure 3). To identify these regions, we used a color composition of the visible spectrum bands (red, green, 
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and blue), Bottom-of-Atmosphere (BOA) level, from the Sentinel-2 mission of the European Space Agency (ESA), 

acquired on April 28, 2020, with cloud coverage below 4.8% and 10 m spatial resolution. Additionally, we visually 

verified some smaller landslides identified in the field using Google Earth Pro and Microsoft Bing Maps platform, 

which provide a spatial resolution of less than 1 m. For the construction of the inventory, we placed a point vector 

at the failure zone of each of the 364 identified landslide features. Subsequently, we randomly distributed 364 

points in the remaining areas of the study region to represent the stable areas. 

 

Figure 3. Landslides and stable areas inventory 

Finally, with the dependent variables defined in a 1:1 ratio (unstable: stable), the input dataset was divided 

into a subgroup for model construction (training) and another for result validation (testing). There is no standard 

predefined categorization for modeling landslide susceptibility (YOUSSEF; POURGHASEMI, 2021). In the 

literature, a common division of 70% for training and 30% for testing is often adopted (e.g. DAO et al., 2020; PHAM 

et al., 2016; SHAHABI et al., 2023), which was also utilized in this work. This procedure represents the most 

commonly used data partitioning technique in data-driven landslide susceptibility models (LIMA et al., 2022). In 

order to ensure robustness, we repeated this training and testing division 100 times for each model, obtaining the 

final results by validating all individual outcomes from the simulated iterations. 

3.2. Landslide Conditioning Factors (LCF) 

The selection of LCF for modeling susceptibility is of utmost importance, as it can directly impact the accuracy 

and reliability of the results. Although there is no specific guideline for this selection, it is crucial that the chosen 

LCF are representative of the characteristics of the study area and the landslides in question (CHEN; 

POURGHASEMI; NAGHIBI, 2018; XU et al., 2013). Furthermore, it is essential that these factors have an analysis 

scale compatible with the research objectives (SHIRANI; PASANDI; ARABAMERI, 2018). In our study, we opted 

for nine LCF (Figure 4), of which seven were extracted from the digital terrain model (DTM) derived from a 

topographic map at a scale of 1:10,000, covering slope angle, geomorphology, topographic wetness index (TWI), 

slope aspect, topographic position index (TPI), slope curvature, and distance from the natural drainage network. 

The distance from roads was derived from the photointerpretation of satellite images and fieldwork. Finally, the 

lithology at a scale of 1:25,000 was obtained from geological maps produced by Endo et al. (2019) and Pinheiro, 

Magalhães, and Silva (2023). Except for the slope curvature, which was prepared at a spatial resolution of 30 m x 

30 m, all other LCF were prepared at a resolution of 10 m x 10 m. 
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Figure 4. Landslide conditioning factors: (a) slope angle, (b) geomorphology, (c) Topographic Wetness Index (TWI), 

(d) slope aspect, (e) Topographic Position Index (TPI), (f) slope curvature, (g) distance from drainage, (h) distance 

from roads, and (i) lithology. 

3.2.1. Slope angle 

In slope stability and LSM, slope angle is one of the first factors to be considered due to its direct influence on 

shear strength, one of the physical fundamentals for triggering mass movements (LEE; MIN, 2001; OGILA, 2021). 
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According to Guillard and Zezere (2012), the instability of soils and rocks tends to increase as the slope angle 

increases. In our study, the adopted slope map covers inclinations are ranging from 0° to 67.92° (Figure 4a). 

3.2.2. Geomorphology 

Geomorphology can reveal the geological processes that shaped the terrain in the past, thus providing 

important clues about areas more prone to landslides. This is because different landform configurations exert 

varying influences on the likelihood of such events occurring (ANBAZHAGAN; SAJINKUMAR, 2011). The 

geomorphological units of the study area, shown in Figure 4b, were classified based on predominant slope angle 

(expressed as a percentage) and local amplitude (the elevation difference between the base and top of terrain units 

defined by the inverted DTM), following the methodology proposed by Souza (2015); Souza and Sobreira (2017), 

as presented in Table 1. Five geomorphological classes were established for the study area: gentle to flat slope, hill 

with gentle slope, hill, gentle to flat slope with high amplitude, and mountain. 

Table 1. Classification of geomorphological units (Souza, 2015; Souza and Sobreira, 2017) 

Local amplitude (m) Predominant slope angle Relief class 

< 100 

< 5% Gentle to flat slope with low amplitude 

5 a 10% Ramp 

10 a 20% Knoll 

> 20% Hillock 

100 a 300 

< 5% Gentle to flat slope* 

5 a 20% Hill with gentle slope* 

> 20% Hill* 

> 300 
< 20% Gentle to flat slope with high amplitude* 

> 20% Mountain* 

* Geomorphological classes identified in the study area 

3.2.3. Topographic Wetness Index (TWI) 

The TWI assesses the degree of moisture at a given location based on topography (POURGHASEMI et al., 

2012; YESILNACAR; SÜZEN, 2006). In areas where water accumulation is significant, soil saturation tends to 

increase during rainy periods, which can raise the likelihood of landslides in locations with higher index values 

(JEBUR; PRADHAN; TEHRANY, 2015; NEFESLIOGLU; DUMAN; DURMAZ, 2008). This occurs due to a decrease 

in cohesion among soil grains, resulting in reduced shear strength. The index is established from Equation 1, 

proposed by Moore, Grayson and Ladson (1991): 

TWI = 𝑙𝑛 (
A

𝑡𝑔(𝛽)
) 

(1) 

Where: 

• A is the specific contributing area of the local watershed (m²/m)  

• β is the local slope angle (in degrees) 

For the study area, the TWI values ranged from 4.83 to 25.92, with higher values indicating a greater tendency 

for water accumulation, as observed in Figure 4c. 

3.2.4. Slope aspect 

The slope aspect is an important factor to consider in LSM (CHEN; NIU; JIA, 2016; GUZZETTI et al., 2005). 

The direction in which a slope is oriented controls certain microclimatic aspects, which can directly or indirectly 

influence the occurrence of landslides, such as solar exposure, wind direction, rainfall intensity, soil moisture, and 

vegetation development (CONFORTI et al., 2014; EIRAS et al., 2021). For the study area, the slope aspect, shown 

in Figure 4d, was classified into nine classes according to the azimuth angle of the slopes: flat (without azimuth 

indication), north (0°-22.5°; 337.5°-360°), northeast (22.5°-67.5°), east (67.5°-112.5°), southeast (112.5°-157.5°), south 

(157.5°-202.5°), southwest (202.5°-247.5°), west (247.5°-292.5°), and northwest (292.5°-337.5°). 
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3.2.5. Topographic Position Index (TPI) 

The TPI shows the difference between the elevation of a point and the average elevation of its surroundings 

(ESLAMINEZHAD; EFTEKHARI; AKBARI, 2020; PAWLUSZEK; BORKOWSKI, 2017). The consideration of TPI in 

LSM arises from the argument that such events typically occur at the ridges of the slopes (BACHRI et al., 2019; 

EFIONG et al., 2021), where TPI exhibits positive values, indicating lower elevations in the surrounding areas. 

However, the negative TPI values suggest the opposite, indicating that the areas around the analyzed point have 

higher elevations (LEE; LEE; LEE, 2018). In the study area, TPI values ranged from -12.84 to 15.75, as illustrated in 

Figure 4e. 

3.2.6. Slope curvature 

According to Ullah et al. (2022), a slope can exhibit three distinct types of curvature in each of its planes, both 

vertical (profile curvature) and horizontal (plan curvature): convex, concave, and flat. Profile curvature is 

responsible for determining the dynamics of water flow acceleration along the slope, influencing the processes of 

erosion and debris deposition. Slopes with concave profile curvature tend to be more prone to landslides 

(GRABOWSKI et al., 2022; OHLMACHER, 2007). On the other hand, plan curvature influences the convergence 

and divergence of water flows. Areas with concave or convergent plan curvature tend to be more susceptible to 

landslides (GRABOWSKI et al., 2022). 

In the present study, plan curvatures were combined with profile curvatures in nine different combinations 

(DIKAU, 1990). For better visual acuity of the curvatures and to avoid unwanted effects of the DTM on the final 

result, the resulting map, shown in Figure 4f, was created at a spatial resolution of 30 m x 30 m (GARCIA, 2012).  

3.2.7. Distance from natural drainage  

Hydrological conditions play an important role in triggering landslides (THANH; DE SMEDT, 2012). For this 

reason, several authors have employed the distance to the drainage network as a LCF (BISWAS; RAHAMAN; 

BARMAN, 2023; BISWAS; RANJAN, 2021; OH; LEE, 2011), given the tendency for some landslides to occur near 

the drainage. Thus, the distance to the drainage network was considered in our study in an ordinal manner, 

ranging from 0 m to 623.08 m, as shown in Figure 4g. 

3.2.8. Distance from roads 

Some authors hypothesize that landslides are more likely to occur near roads or pathways, primarily due to 

the geometric alteration of slopes (cuts and fills) and the interference with natural drainage (ABU EL-MAGD; ALI; 

PHAM, 2021; DAHAL et al., 2008). This hypothesis was reinforced during fieldwork in the study area, where 

several landslide scars were identified close to the roads. The distance to the map of the roads, represented in 

Figure 4h, was developed in an ordinal manner, covering distances that ranged from 0 m to 1658.85 m for the study 

area. 

3.2.9. Lithology 

Lithological variations are an important parameter for geological risk analyses and LSM (HENRIQUES; 

ZÊZERE; MARQUES, 2015; POURGHASEMI; KERLE, 2016; RAHMATI et al., 2016). Physical, hydrological, and 

mechanical characteristics, such as strength, density, permeability, and weathering degree, vary according to 

lithological type (NAEMITABAR; ZANGANEH ASADI, 2021; YOUSSEF; POURGHASEMI, 2021). For the study 

area, eight lithological units were extracted at a scale of 1:25,000, as shown in Table 2 and Figure 4i, based on the 

work of Endo et al. (2019) and Pinheiro, Magalhães, and Silva (2023).  
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Table 2. Characterization of the lithological units present in the study area 

Code Lithology  

UL1 
Metamafic rocks: amphibolites, amphibole 

schists, and mylonites 

UL2 Meta-sandstones and impure meta-arkoses 

UL3 Migmatites: metatexites and gneisses 

UL4 
Clayey-sandy sediments: mudstones with fine 

arenaceous-siltstone levels 

UL5 Biotite metagranites, granodiorites, and tonalites 

UL6 

Paleoproterozoic injection gneisses over 

migmatites and Archean gneisses, mafic, and 

meta-ultramafic rocks 

UL7 Banded iron formation 

UL8 
Meta-ultramafic rocks: soapstones, serpentinites, 

schists, and mylonites 

3.3. Landslide conditioning factors (LCF) ranking 

In the context of ML models for susceptibility mapping, the ranking of LCF serves as an important 

preprocessing step. This phase aims to evaluate the impact of conditioning factors on the accuracy and reliability 

of the models (SAHIN et al., 2020). The objective is to eliminate superfluous or redundant information, while 

establishing the optimal combinations of factors (PHAM et al., 2021). 

In our study, we ranked the LCF using Information Gain (IG), a highly effective technique for selecting 

influential variables, which is widely adopted in the ML field (LI et al., 2022; QUINLAN, 1986). According to Pham 

et al. (2017), IG is quantified based on the measure of entropy reduction in the LCF and it offers a valuable approach 

for evaluating their contribution to the landslide susceptibility modeling. 

In this context, the nine LCF considered in the study were hierarchically ranked based on IG, where higher 

values indicate a more significant contribution of the factor to the model construction. 

3.4. Selection of machine learning technique for the landslide susceptibility modeling 

We evaluated the performance of three ML approaches for landslide susceptibility modeling: RF, LR, and 

ANN. The number of LCF considered in each learning technique varied from 4 to 9, with integration based on the 

ranking produced by Information Gain (IG). Initially, only the four attributes with the highest IG values were 

included, gradually expanding to cover all available LCF. Our analysis focused on the best-performing model 

developed for each set with the same number of LCF. In other words, for each approach, we evaluated and 

compared the best model using 4, 5, 6, 7, 8, and 9 LCF. 

3.4.1. Random Forests (RF) 

RF is a non-parametric ensemble learning classification method developed by Breiman (2001). The input data 

is arbitrarily selected and resampled in equal proportions into smaller subsets known as decision trees, using the 

bagging technique (CRUZ; OLIVEIRA, 2021; UEHARA et al., 2020), where the final classification is determined by 

the most frequent result among the created subsets. In order to build the model, the user must define the number 

of trees in the forest and the number of attributes to be considered at each tree node. The nodes represent decision 

points where data is split based on certain criteria. Each node may have zero or more branches, representing 

different paths in the decision-making process. These procedures allow for the creation of trees with relatively low 

bias and high variance, therefore, contributing to a better model performance (HASTIE; TIBSHIRANI; 

FRIEDMAN, 2009; PHAM et al., 2019; ZHANG et al., 2017). 

In this study, various models were developed, hence exploring a wide range of configurations. These 

variations included different numbers of trees, ranging from 10 to 100, with increments of 10 trees at each step. 

Additionally, the number of LCF considered at each tree node ranged from two, thus representing the minimum 

number possible, to the maximum number of LCF available in each model. 
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3.4.2. Logistic Regression (LR) 

LR, introduced by Cox (1958), and Walker and Duncan (1967), is a multivariate analysis approach used to 

model the probability of a characteristic or outcome (LEE, 2004, 2005). The approach estimates the binary 

probability of a dependent variable using a logistic function, which allows a linear combination of independent 

predictor variables to be transformed into a value that can be interpreted as a probability (MASCANZONI et al., 

2018). Over the years, LR has become the most widely used statistical method for LSM worldwide due to its 

simplicity and effectiveness (CHOWDHURY, 2023; DOMÍNGUEZ-CUESTA et al., 2010; POURGHASEMI et al., 

2018). 

In order to mitigate overfitting and enhance the generalization ability of LR models, regularization techniques 

are commonly employed, particularly Lasso (L1) and Ridge (L2) methods (ABDELRAHMAN, 2020; NG, 2004). 

While L1 regularization can zero out some regression coefficients, removing less relevant variables, L2 reduces 

overfitting by decreasing the impact of highly correlated variable coefficients without necessarily excluding them 

(KOPPE; MEYER-LINDENBERG; DURSTEWITZ, 2021; MIRANDA; BOMBACINI, 2023). The intensity of 

regularization is influenced by the cost parameter C, where a lower value implies stronger regularization and a 

higher value reduces this strength. 

Various LR configurations were tested, varying the regularization methods between L1 and L2 and adjusting 

the cost parameter C from 0.001 to 1000. 

3.4.3. Artificial Neural Networks (ANN) 

ANN, introduced by McCulloch and Pitts (1943), is a supervised learning classification technique inspired by 

the neural structure of the human brain. They are designed to recognize patterns and learn from input data through 

a training process (AGATONOVIC-KUSTRIN; BERESFORD, 2000; MOULOODI et al., 2021). In our study, we 

utilized a multi-layer perceptron (MLP) ANN with a backpropagation algorithm. The MLP operates by feeding 

the data into an input layer, which is then processed through one or more hidden layers of neurons. These basic 

computational units mimic the functioning of biological neurons in the human brain, utilizing weights and 

activation functions (ALALOUL; QURESHI, 2020; PARK; LEK, 2016). The correction and optimization of weights 

occur through the backpropagation method, which adjusts the weights based on the error between the predicted 

output and the actual output. This iterative process allows the MLP to learn complex patterns in the data, making 

it a powerful tool for analyzing and modeling complex systems (GARDNER; DORLING, 1998; NASKATH; 

SIVAKAMASUNDARI; BEGUM, 2023; ZAJMI; AHMED; JAHARADAK, 2018). 

For the activation function, we chose the Rectified Linear Unit (ReLU) function (NAIR; HINTON, 2010; XU et 

al., 2015). This choice was due to its recognized simplicity and computational efficiency, along with its widespread 

use in training ANN (NOLA, 2022; PAUL et al., 2023). To adjust the weights of the neurons and minimize the 

prediction error of the ANN, we adopted the Adam optimizer, using the Adaptive Moment Estimation method 

(KINGMA; BA, 2014). The Adam optimizer was selected due to its efficiency and the strong performance 

demonstrated in ML studies focused on landslides (e.g. NHU et al., 2020; PANDEY et al., 2022; WANG et al., 2020; 

YI et al., 2022). 

In order to reduce the risk of overfitting and to maintain the construction of simpler models, we opted to use 

a single hidden layer of neurons in the ANN.  The number of neurons in each developed model was determined 

based on the maximum value established by Equation 2, proposed by Hecht-Nielsen (1987), which considers both 

the number of neurons in the hidden layer (H) and the number of LCF employed in the model (n). 

𝐻 ≤ 2𝑛 + 1 (2) 

As a preventive measure against overfitting of the models to the training data, we implemented the “early 

stopping” technique. This technique, supported by the literature (HAYKIN, 2001; PRECHELT, 1998), allows for 

the interruption of training when there are no significant improvements in the performance of the models. 

Additionally, this decision is justified as a means of reducing the computational complexity of the models. After 

various tests on the training subset, the criteria for early stopping were established with a learning rate of α = 1 

and a maximum number of iterations for the models set at 500. These values proved to be effective and suitable, 

regardless of the number of LCF considered in each model.  
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3.5. Performance evaluation 

For each of the applied ML approaches, RF, LR, and ANN, the best models were evaluated. The performance 

evaluation of the models considered metrics widely used in studies related to ML and geosciences. This involved 

the use of ROC (Receiver Operating Characteristic) curves and confusion matrices. The ROC curve correlates the 

true positive rate (sensitivity) with the false positive rate (1 - specificity) at different threshold settings, thus 

providing a statistical index of overall model performance through the area under the ROC curve (AUC-ROC) 

(BEGUERÍA, 2006; CHUNG; FABBRI, 2003). Furthermore, performance metrics such as accuracy, precision, 

sensitivity, specificity, and F1-Score were extracted from the confusion matrix, calculated according to Equations 

3 – 7 (e.g. BUI et al., 2020; EIRAS et al., 2021; JIAO et al., 2019; SINGH et al., 2023; SOLANKI; GUPTA; JOSHI, 2022). 

At the end of the calculations, the best models were selected based on the obtained values of accuracy, AUC-ROC 

(which encompasses both sensitivity and specificity), and F1-Score (which encompasses both precision and 

sensitivity). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (T𝑃 + 𝑇𝑁) ÷ (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (3) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃) (4) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁) (5) 

specificity = T𝑁 ÷ (𝑇𝑁 + 𝐹𝑃) (6) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ precision ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

precision + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

(7) 

Where: 

• TP = True positives; 

• TN = True negatives; 

• FP = False positives; 

• FN = False negatives. 

For each of the three adopted ML techniques, considering all possible configurations of the ML algorithms 

and variations in the input data (Section 3.4), we selected the best model developed by each algorithm and 

calculated the landslide susceptibility index for the study area. Subsequently, the resulting susceptibility maps 

were reclassified into three distinct susceptibility zones using the natural breaks classification method (Jenks), 

which were qualified into categories of low, moderate, and high susceptibility. Finally, we evaluated the efficiency 

of the classifications in the susceptibility maps based on the density of landslide areas present in the high and low 

susceptibility categories. In this context, we utilized the significance values of the Efficiency Rate (ER), in Equation 

8, and Table 3, proposed by Chung and Fabbri (2003) and adapted by Guzzetti et al. (2006) for complex regions 

with a high incidence of landslides.  

ER𝑖 =
(𝑆 ⋂ 𝐶𝑖)

𝐶𝑖

÷
𝑆

Ω
 (8) 

Where: 

• ER𝑖 = Efficiency rate of class 𝑖; 

• Ω = Entire study area; 

• 𝑆 = Area occupied by all landslides across the entire area Ω; 

• 𝐶𝑖 = Area of class 𝑖. 

Table 3. Significance of the efficiency rate at susceptibility levels 

Classification Efficiency 
Efficiency Rate (ER) 

Chung and Fabbri (2003) Guzzetti et al. (2006) 

High Susceptibility 

Very significant ER𝑖 > 6 ER𝑖 > 1.5 

Significant 3 < ER𝑖 ≤ 6 - 

Not significant 0.2 ≤ ER𝑖 ≤ 3 0.5 ≤ ER𝑖 ≤ 1.5 

Low Susceptibility 

Not significant 0.2 ≤ ER𝑖 ≤ 3 0.5 ≤ ER𝑖 ≤ 1.5 

Significant 0.1 ≤ ER𝑖 < 0.2 - 

Very significant ER𝑖 < 0.1 ER𝑖 < 0.5 
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4. Results 

4.1. Landslide conditioning factors (LCF)  

The importance of each LCF is illustrated in Figure 5, according to the total IG value. It was observed that the 

slope angle is the most significant factor (IG = 0.486), followed by geomorphology (IG = 0.235), TWI (IG = 0.138), 

lithology (IG = 0.077), slope aspect (IG = 0.067), TPI (IG = 0.052), distance from drainage (IG = 0.032), slope curvature 

(IG = 0.029), and finally, the distance from the roads (IG = 0.024). 

 

Figure 5. Importance of LCF according to IG values 

4.2. Construction of the Landslide Susceptibility Models  

According to Table 4, the RF models with the best performance are identified, considering the variation in the 

number of LCF used, ranging from four to nine. Additionally, Table 4 highlights the best RF model found (RF-6) 

based on accuracy, AUC-ROC, and the F1-Score values. 

Table 4. Best developed RF models 

Configurations 
Models 

RF-1 RF-2 RF-3 RF-4 RF-5 RF-6 

Number of LCF 4 5 6 7 8 9 

Number of decision trees 100 70 90 100 100 90 

Number of LCF at nodes 4 5 6 5 6 3 

AUC-ROC 0.922 0.923 0.940 0.941 0.942 0.947 

Accuracy 0.850 0.851 0.867 0.873 0.872 0.878 

Precision 0.846 0.844 0.861 0.865 0.862 0.858 

Sensitivity 0.855 0.859 0.875 0.882 0.886 0.906 

Specificity 0.845 0.842 0.859 0.863 0.858 0.850 

F1-Score 0.850 0.852 0.868 0.874 0.874 0.881 

Among the evaluated LR models, considering the variation from four to nine LCF, the ones that showed the 

best results were built using L2 regularization and C=0.01, as presented in Table 5. Furthermore, Table 5 highlights 

the best identified LR model (LR-4) based on the accuracy, AUC-ROC, and F1-Score values.  
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Table 5. Best developed LR models 

Configurations 
Models 

LR-1 LR-2 LR-3 LR-4 LR-5 LR-6 

Number of LCF 4 5 6 7 8 9 

Regularization method L2 L2 L2 L2 L2 L2 

Regularization strength 0.1 0.1 0.1 0.1 0.1 0.1 

AUC-ROC 0.929 0.931 0.935 0.936 0.935 0.935 

Accuracy 0.874 0.874 0.875 0.885 0.884 0.882 

Precision 0.852 0.851 0.852 0.862 0.860 0.859 

Sensitivity 0.906 0.906 0.908 0.915 0.916 0.914 

Specificity 0.843 0.842 0.843 0.854 0.851 0.850 

F1-Score 0.878 0.878 0.879 0.888 0.887 0.886 

According to Table 6, the ANN models that demonstrated the best performance were evaluated based on the 

variation in the number of LCF used, ranging from four to nine. Although model ANN-3 achieved the highest 

AUC-ROC score, its accuracy and F1-Score values were slightly lower than those of model ANN-1. This suggests 

that both models could be applied to landslide susceptibility modeling, as they present good statistical metrics. 

However, we opted to select ANN-3 for comparison with the other approaches used in the study, since AUC-ROC 

is one of the most widely adopted metrics for selecting the best ML models, as demonstrated by other authors (e.g. 

POURGHASEMI; RAHMATI, 2018; SARFRAZ et al., 2022). 

Table 6. Best developed ANN models 

Configurations 
Models 

ANN-1 ANN-2 ANN-3 ANN-4 ANN-5 ANN-6 

Number of LCF 4 5 6 7 8 9 

Number of neurons in the hidden layer 9 11 13 15 17 19 

Activation function ReLu ReLu ReLu ReLu ReLu ReLu 

Optimizer Adam Adam Adam Adam Adam Adam 

Learning rate α 1 1 1 1 1 1 

Limit of iterations 500 500 500 500 500 500 

AUC-ROC 0.931 0.928 0.934 0.932 0.931 0.930 

Accuracy 0.865 0.855 0.864 0.862 0.862 0.863 

Precision 0.851 0.841 0.853 0.850 0.846 0.850 

Sensitivity 0.886 0.876 0.881 0.879 0.885 0.881 

Specificity 0.845 0.834 0.848 0.845 0.840 0.845 

F1-Score 0.868 0.858 0.867 0.864 0.865 0.866 

In order to compare the results, Figures 6, 7, and 8 present the susceptibility maps generated by the most 

effective model identified in each applied ML approach (RF-6, LR-4 and ANN-3).  
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Figure 6. Landslide susceptibility map of the RF-6 model 

 

Figure 7. Landslide susceptibility map of the LR-4 model 
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Figure 8. Landslide susceptibility map of the ANN-3 model 

Regardless of the ML method employed, all susceptibility models exhibited high AUC-ROC values (RF-6 = 

0.947, LR-4 = 0.936 and ANN-3 = 0.934), as shown in Figure 9.  

 

Figure 9. ROC Curves of the RF-6, LR-4 and ANN-3 models  
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The percentage of area assigned to each susceptibility class (low, moderate and high) and the efficiency rates 

calculated for the low (𝐸𝑅𝑖
𝐿𝑆) and high (𝐸𝑅𝑖

𝐻𝑆) susceptibility classes of each model are detailed in Table 7. 

Table 7. Area (%) for each mapped landslide susceptibility class 

Model 

Susceptibility class Classification efficiency rate (𝑬𝑹𝒊) 

Low Moderate High 
Low susceptibility 

(𝐸𝑅𝑖
𝐿𝑆) 

High susceptibility 

(𝐸𝑅𝑖
𝐻𝑆) 

RF-6 65.606% 19.526% 14.868% 0.030 6.808 

LR-4 65.099% 19.497% 15.404% 0.050 5.695 

ANN-3 69.325% 17.321% 13.354% 0.060 6.495 

5. Discussions 

The success of landslide susceptibility modeling directly depends on selecting the most appropriate statistical 

technique (FELICÍSIMO et al., 2013). Although several studies have compared different ML approaches, there is 

still no definitive consensus on which technique is the most effective. The selection of the most suitable approach 

depends on understanding the investigated process, as well as the availability and quality of the data. Therefore, 

it is crucial to conduct comparisons among different methodological techniques to determine the most appropriate 

for LSM in various contexts. The analyses conducted in our study, comparing the techniques of RF, LR and ANN 

for susceptibility mapping, contribute to this understanding, complementing previous research that investigated 

different ML approaches, such as the studies conducted by Akgun (2012), Chen et al. (2023), Liu et al. (2022), and 

Pham et al. (2016). 

Pham et al. (2021) indicate the evaluation on the importance of LCF to enhance the generalization capacity of 

LSM models. In our research, by using the IG index for this purpose, we found that slope angle was the most 

significant factor for modeling susceptibility in the investigated region. Although this finding is aligned with other 

studies conducted in mountainous regions, such as those by Kumar et al. (2023), Youssef and Pourghasemi (2021), 

which highlighted the importance of slope angle in the predisposition to landslides, it is also important to consider 

that slope angle is not always the primary LCF. As emphasized by Micheletti et al. (2014), LCF are influenced by 

the intrinsic characteristics of the terrain and the local nature of landslides. Thus, the relevance of a specific factor 

may vary depending on the study area.   

Although the removal of irrelevant LCF is an important step in susceptibility modeling, as indicated by 

Merghadi et al. (2020), our research did not identify significant variations in the results obtained due to this process. 

A slight variation in AUC-ROC was observed among the best-performing models, with the number of LCF 

considered alternating for each adopted ML technique: 2.5% for the RF technique, 0.7% for LR, and 0.6% for ANN 

(Table 8). This suggests that any of the best-performing models for each adopted ML technique would yield 

satisfactory results. However, for comparison purposes, we chose to use the models that achieved the highest AUC-

ROC values, which were the RF-6 (AUC-ROC=0.947), LR-4 (AUC-ROC=0.936), and ANN-3 (AUC-ROC=0.934), 

constructed with the nine, seven, and six most important LCF, respectively. Our results indicated the effectiveness 

of all three models, with AUC-ROC values close to those found in the ML models evaluated by Youssef and 

Pourghasemi (2021), which ranged from 0.890 for the quadratic discriminant analysis technique to 0.951 for the RF, 

and higher than those evaluated by Pourghasemi and Rahmati (2018), which ranged from 0.624 for the generalized 

linear model technique to 0.837 for the RF.  

Table 8. Variation of AUC-ROC observed in the best models of each adopted ML technique 

Machine learning 

technique 

Model with the highest 

AUC-ROC value 

Model with the lowest 

AUC-ROC value 

Variation of 

AUC-ROC 

RF 0.947 0.922 2.5% 

LR 0.936 0.929 0.7% 

ANN 0.934 0.928 0.6% 
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The other statistical metrics analyzed for the models RF-6 (accuracy = 0.878, precision = 0.858, sensitivity = 

0.906, specificity = 0.906, and F1 Score = 0.881), LR-4 (accuracy = 0.885, precision = 0.862, sensitivity = 0.915, 

specificity = 0.854, and F1 Score = 0.888), and ANN-3 (accuracy = 0.864, precision = 0.853, sensitivity = 0.881, 

specificity = 0.848, and F1 Score = 0.867) demonstrate that all the ML approaches utilized were effective in 

adequately and sensitively identifying areas susceptible to landslides, as well as in properly distinguishing non-

susceptible areas. The values obtained for the analyzed metrics are comparable to those in previous studies that 

also demonstrated strong performances in the ML models evaluated (SHAHZAD; DING; ABBAS, 2022; WANG et 

al., 2021; ZHANG et al., 2022). 

Additionally, we considered the ER for evaluating the models. For the classification of low susceptibility, the 

TE results for the best model of each ML technique (RF-6 = 0.03, LR-4 = 0.05 and ANN-3 = 0.06) demonstrated very 

significant efficiency, remaining within the limits defined by Chung and Fabbri (2003), and Guzzetti et al. (2006). 

Furthermore, the results demonstrated that the RF-6 model had the lowest number of areas with landslide 

occurrences in the low susceptibility range. Regarding the classification of high susceptibility, the ER results (RF-6 

= 6.808, LR-4 = 5.695 and ANN-3 = 6.495) showed that the RF-6 and ANN-3 models achieved a high significant 

efficiency, while the LR-4 model achieved significant efficiency, according to the criteria established by Chung and 

Fabbri (2003). However, when considering the limits adapted by Guzzetti (2006) for the complex areas with a 

significant history of landslides, as is the case in the studied region, all three models demonstrated a very 

significant efficiency. Notably, for the classification of high susceptibility, the RF-6 model exhibited the highest ER 

value, indicating that the area delineated as high susceptibility by this model encompassed a larger extent of 

landslides compared to the ANN-3 and LR-4 models. 

Considering all the evaluation metrics adopted, the three ML methodologies used to model landslide 

susceptibility in the study area demonstrated a remarkable compatibility of efficiency, making it difficult to 

determine which technique was superior. From a practical standpoint, any of the three LSM models produced 

would be capable of fulfilling its primary objective: predicting areas prone to future landslides and providing 

support in decision-making to prevent and mitigate these events. However, since the RF-6 model presented the 

best AUC-ROC and ER metrics for high and low susceptibility classes, we opted to select it to represent the 

landslide susceptibility of the study area.  

6. Conclusion 

The mapping of landslide susceptibility plays a crucial role in natural risk management. With the increasing 

incidence of landslides in various regions worldwide, particularly in the mountainous areas of Brazil, it becomes 

increasingly imperative to develop effective approaches to identify areas susceptible to these events. In this context, 

machine learning techniques emerge as promising tools capable of providing valuable insights for the prediction 

and mitigation of landslides. Thus, this research arrived at the following conclusions:  

(1) The information gain index satisfactorily indicated the influence order of the conditioning factors in the 

modeling of landslide susceptibility, with slope being the most important factor, followed by 

geomorphology, TWI, lithology, slope orientation, TPI, distance from the drainage network, slope 

curvature, and distance from the roads;  

(2) The best models produced by each statistical technique varied the number of conditioning factors 

considered, highlighting a close relationship between the machine learning algorithm and the 

peculiarities of the study area; 

(3) The Random Forest, Logistic Regression, and Artificial Neural Networks approaches demonstrated good 

performances for the spatial prediction of landslides in the studied region. Although the results show 

statistical compatibility among the three approaches, the Random Forest model RF-6, which employed 

all available conditioning factors in the training, exhibited a high AUC-ROC (0.947) and very significant 

Efficiency Rate for the high and low susceptibility classes (𝐸𝑅𝑖
𝐻𝑆 = 0.03 𝑒 𝐸𝑅𝑖

𝐿𝑆 = 6.808). This model also 

demonstrated an accuracy of 87.8%, precision of 85.8%, sensitivity of 90.6%, specificity of 90.6%, and F1-

Score of 88.1%, thus reinforcing its ability to pertinently predict areas susceptible to landslides; 

(4) Machine learning approaches for mapping landslide susceptibility have demonstrated high predictive 

capacity, establishing themselves as a reliable and robust alternative for cartographic production, 

assisting engineers and decision-makers in the prevention and mitigation of landslides, especially in 

hard-to-reach areas such as mountainous regions; 
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(5) The development and improvement of statistical methodologies for mapping landslide susceptibility, 

particularly focusing on machine learning techniques, are still on the rise in the international context, 

especially in Brazil. In this scenario, these studies play a crucial role by providing valuable discussions 

and significantly contributing to the advancement of science 
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