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Abstract: Problems with soil erosion by water wind in the Brazilian Amazon are intensifying as the forest is replaced by 

agricultural production. Deforestation, burning, logging, and advancing the agricultural frontier have altered the soil-

vegetation balance. In this context, the analysis of soil erosion susceptibility is one of the most significant challenges to 

developing long-term sustainability strategies and policies. Based on the above, the present study used the principles of 

Statistical Modeling - Logistic Regression - to develop and validate a model for analysis of susceptibility to soil erosion using 

14 environmental factors. The study was carried out in a hydrographic sub-basin with 330 km2, located in the south of the 

State of Rondônia in the western Amazon, which combines characteristics of intense anthropic activity, loss of fertile soil, 

gullies, and silting of rivers. The study area has rainfall above 2000 mm year-1, they are transcurrent shear zones, 

predominant relief forms are flat to slightly convex tops, drainage networks are dendritic in an exorheic system, vegetation 

cover is composed of areas of forests and natural or regenerated forest fragments, agriculture is destined to annual crops. 

Livestock is extensive, with a predominance of small rural properties. The logistic regression model showed satisfactory 

results with an AUC of 0.888 and global accuracy was 0.77. The variables with the most significant effect on the equation 

were NDVI, erosivity, and TST. The mapping found that 57.71% of the study area is in places susceptible to soil loss due to 

water events. 

Keywords: Susceptibility; Logistic regression; Soil erosion on Amazon. 

Resumo: Os problemas com erosão solo por vento hídrico na Amazônia Brasileira estão se intensificando à medida que a 

floresta é substituída pela produção agropecuária. Atividades como o desmatamento, queimada, exploração madeireira e o 

avanço da fronteira agrícola alteraram o equilíbrio solo-vegetação e, nesse contexto, a análise da suscetibilidade à erosão do 

solo é um dos maiores desafios para desenvolver estratégias e políticas de sustentabilidade de longo prazo. Com base no 

exposto, o presente estudo fez uso dos princípios da Modelagem Estatística - Regressão Logística Binária - para desenvolver 

e validar um modelo de análise da suscetibilidade à erosão do solo, empregando 14 fatores ambientais. O estudo foi 

realizado em uma sub-bacia hidrográfica com 330 km2, localizado no Sul do Estado de Rondônia na Amazônia ocidental, 

que reúne características de intensa atividade antrópica, perde solo férteis, voçorocamentos e assoreamentos dos rios. A área 

de estudo apresenta pluviosidade acima de 2000 mm ano-1, são zonas de cisalhamento transcorrentes, as formas 

predominantes do relevo são topo planos a ligeiramente convexizados, as redes de drenagens são dendrítica em um sistema 

exorréico, a cobertura vegetal é composta por áreas de florestas e fragmentos florestais naturais ou regenerados, a 
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agricultura é destinada a culturas anuais e a pecuária é extensiva com predomínio de pequenas propriedades rurais. O 

modelo de regressão logística apresentou resultados satisfatório com AUC de 0,888 e a exatidão global foi de 0,77, as 

variáveis de maior efeito na equação foram NDVI, erosividade e TST, e o mapeamento constatou que 57,71% da área de 

estudo encontra-se em locais suscetíveis a perda de solo por evento hídrico. 

Palavras-chave: Modelagem; Amazônia; Erosão de solo 

 

1. Introduction 

Water‐related soil erosion is one of the most important natural hazards, bringing on land degradation, loss 

of soil resources, reduction of soil fertility, desertification, and destruction of human infrastructure 

(ARABAMERI et al., 2018). It is recognized as the leading cause of land degradation worldwide (VAN 

LEEUWEN et al., 2019). Den Biggelaar et al., (2003) suggest that the global average rates of entrepreneurs are 

between 12 and 15 tons ha-1 yr-1. Zuazo and Pleguezuelo (2009) claim that approximately 75 billion tons of soil are 

eroded from terrestrial ecosystems. According to FAO (2015), approximately 33% of the world's soils are 

degraded, and soil erosion is responsible for losing 25 to 40 billion tons of soil annually. 

In the Brazilian Amazon, due to the occupation process, mainly from the 1970s onwards, a series of adverse 

environmental events such as deforestation, burning, logging, and advances in the agricultural frontier resulted 

in the breaking of the soil-vegetation balance and have been A considerable increase in erosion processes was 

observed, marked mainly by large incisions such as ravines and gullies (ALBUQUERQUE; VIEIRA, 2014). 

Among the factors of anthropogenic modifications with the most significant impact are agricultural practices 

with inadequate driving techniques, extensive animal production, and the low zootechnical indexes of the herd, 

in addition to the implantation and development of urban centers without prior planning (FONSECA, 2017). 

Analysis of soil erosion susceptibility is one of the significant challenges to developing appropriate long-

term sustainability strategies and policies. Several analyses of soil erosion have been conducted to understand, 

measure, and propose mitigation strategies, ranging from purely quantitative evaluations to studies using 

complex qualitative methods (SARKAR; MISHRA, 2018). Modeling is a tool that allows spatial extrapolating of 

the results obtained to new regions to characterize future scenarios. According to Fernandes (2016), they are like 

simplified structures of reality that supposedly present (or preserve) its most important characteristics or 

relationships. Several erosion susceptibility modeling studies have been conducted (CHEN et al., 2017; 

ARABAMERI et al., 2018; SHOLAGBERU et al., 2019; BRAGAGNOLO et al., 2020). 

Although these models were developed based on specific geoenvironmental conditions, in general, mapping 

based on multivariate analysis is a relevant approach because it seeks to understand the phenomenon from a set 

of direct or indirect factors, considering the relationships between them and with the event. In this sense, 

modeling complex nonlinear systems, such as the triggering factors of erosive processes, requires integrating 

models techniques, GIS, and data-mining methods. Modeling techniques are diverse and can be classified into 

multicriteria decision-making, statistical, and machine-learning models (ARABEMERI et al., 2020). Multicriteria 

decision-making models involve techniques such as the analytic hierarchy method (AHP) (CALDAS et al., 2019); 

multicriteria decision-making, in which a scale is applied at a pre-established interval to indicate the range of 

maximum effect to no effect on the manifestation of erosive processes (FANTINEL; BENEDETTI, 2016); and 

hierarchization of values according to the importance of factors concerning erosion (VALLE; FRANCELINO and 

PINHEIRO, 2016). 

Statistical models include logistic regression (RAJA et al., 2016); information value (SARKAR; ROY and 

MARTHA, 2013); conditional probability (RAHMATI et al., 2017); frequency ratio (MELIHO et al., 2018); entropy 

index (JAAFARI et al., 2014); certainty factor (SOMA; KUBOTA, 2018); and weights of evidence (WoE) (GOYES-

PEÑAFIEL; HERNANDEZ-ROJAS, 2021). The most advanced research techniques based on Machine Learning 

methods involve models such as fuzzy logic and neuro-fuzzy systems (YAVARI et al., 2018); artificial neural 

networks (ANN) (SHAHRI et al., 2019); support vector machine (SVM) (LEE; HONG; JUNG, 2017); generative 

adversarial networks (GAN) (AL-NAJJAR; PRADHAN, 2021); convolutional neural network (CNN) (MEENA et 

al., 2021). Recently, hybrid integration approaches have been gradually introduced in erosion susceptibility 

mapping (BRAGAGNOLO et al., 2020; ARABAMERI et al., 2021).  
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Logistic regression, the model chosen in the present study, is a well-recognized and widely applied 

nonlinear system to predict the probability of presence or absence. Binary logistic regression (BLR), therefore, is 

an appropriate type of regression preferred when treating dichotomous categorical dependent variables, that is, 

nominal or non-metric variables with only two groups or classifications (NARDI et al., 2019). In general, they 

enable the intuitive selection of relevant attributes and are distinguished from other regression techniques 

because the response variable may be categorical. 

In Brazil, the modeling of areas susceptible due to hydric events are mainly addressed using multicriteria 

decision-making models (ADAMI et al., 2012; SILVA; MACHADO, 2014; CORTE et al., 2015; AGRA; ANDRADE, 

2021). However, surveys of regions susceptible to erosion processes suggest a need to update both the method 

and the variables used, improve the quality and scale of products, and significantly reduce subjectivity (RAJA et 

al., 2017; ARABAMERI et al., 2018). Considering the context described above, the present study used a BLR 

statistical and validated a model of susceptibility to soil erosion due to hydric events in Rondônia, southern 

Amazon, Brazil. 

2. Materials and Methods 

2.1. Location and characterization of the study area  

The study area consists of the Sete Voltas River sub-basin, located in the municipality of Colorado do Oeste, 

Rondônia State, in the southern Amazon (13°04'45,329" S / 60°30'42,942" W) (Figure 1). The area is occupied by 

cultivated pasture with more than 30 years of formation, implanted after the felling of the native vegetation. 

Extensive livestock farming is practiced without pasture management and management techniques. The animal 

stocking rate varies according to forage availability and is seasonal due to rainfall (FONSECA, 2017). The grass is 

slightly degraded according to the scale (NOGUEIRA, 2016) developed for the municipality. Historically, these 

are areas with inexpressive economic activity until the 1970s, based on extractivism (SILVA, 2012). The effective 

occupation of the region occurred after the implantation of the Integrated Settlement Projects (PICs) and 

Colonization and Directed Settlement Projects (PADs), as part of the national policy for the de facto occupation of 

the Brazilian territory, during the military government, making a large flow of migrants from various regions of 

the country came to the State (TEIXEIRA; FONSECA, 2003). 

After this migratory flow to the region, Rondônia was incorporated into the national economic system with 

the exponential growth of agricultural activity in the eighties and nineties of the twentieth century (LINHARES 

et al., 2014). However, according to Fonseca (2017), as population growth and development of the urban core 

occurred, there was an increase in the amount of deforested area and the number of forest fragments, with direct 

consequences in the loss of productive soils through erosion events. 
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Figure 1. Location of the study area. 

Area of study is composed of alluvial plains, from sedimentary processes that commonly occur in river 

environments, and occasionally from lacustrine processes (PLANAFLORO, 1998), and by denudation units in 

which the eroded surface and subsurface material are entirely removed from the area due to the processes of 

physical and chemical weathering of the bedrock. The geological substrate dates different epochs, including 

Nova Brasilândia Metavolcanic-Sedimentary sequence and minor isolated points formed by the Alto Candeias 

Intrusive Suite from the Mesoproterozoic Neoproterozoic Eras, the Parecis Formation from the Mesozoic at the 

northern of the sub-basin, and Cenozoic surface formations (CPRM, 1999). 

The average annual rainfall for the municipality of Colorado do Oeste is 1,900 mm year-1. The months with 

the highest rainfall intensity correspond to the Amazonian winter period (December to March), with rainfall 

more significant than 300 mm month-1.  Dry period is three months, with rainfall below 50 mm (June, July, and 

August) (FONSECA, 2017). The prevailing climate is Tropical Rainy, with an average air temperature during the 

coldest month above 18 °C (mega thermal) (SEDAM, 2010). The average annual air temperature is high and 

uniform throughout the year, with an average of 26 °C (VIEIRA et al., 2014). The vegetation cover comprises 

Semideciduous Ombrophilous Forest, Cerrado, and transition zones between the two in natural forest fragments 

(FONSECA; LOCATELLI; SILVA FILHO, 2018). 

Drainage networks are tributaries of the Guaporé River and have springs on the edge of Chapada dos 

Parecis (RADAMBRASIL, 1979). According to Fonseca and Silva Filho (2017), the sub-basins in the region are 

dendritic in an exorheic system. The vegetation cover mainly comprises forest areas and natural or regenerated 

arboreal forest fragments, in which Ombrophylous Forest, Cerrado, and transition areas are observed 

(FONSECA; LOCATELLI; SILVA FILHO, 2018). 
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Susceptibility Map  

2.2. Methodology 

This research involved several steps and processes (Figure 2), presented below: 

 
 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of the methodology used in the study. a) Lithology; b) Land Surface Temperature; c) Aspect; d) 

Drainage Density; e) Elevation; f) Pedology; g) Erosivity; h) Land Use and Occupation; i) NDVI, j) Topographic 

Wetness Index; k) Slope; l) Stream Power Index; m) Curvature. 

2.2.1. Conditioning factors 

The selection ensures the maximum accuracy in forecasting, minimization of complexity, and absence of 

redundancy. The conditioning parameters are under three main categories: 1. topographic parameters derived 

from the digital elevation model (elevation, slope, aspect, slope curvature, composite topographic index, and 

stream power index); 2. geological parameters (lithology, drainage density, and lineament density); 3. 

environmental parameters (normalized difference vegetation index (NDVI), land surface temperature, land use 

and occupation, erosivity, and soil type). The parameters were chosen based on the researcher's experience, the 

current specialized literature, the scale of analysis, the data availability, and the study's purpose. 

The predictors were developed using the following databases and software: 1. Geomorphometric Database of 

Brazil (TOPODATA) with a spatial resolution of 30 meters from the Brazilian Institute of Geography and 

Statistics (IBGE), which offers a digital elevation model (DEM) and its basic local derivations across the country 

from SRTM data provided by the United States Geological Survey (USGS); 2. Socio-Ecological Zoning of the State 

of Rondônia (PLANAFLORO) from the Secretary of State for Environmental Development (SEDAM), which 
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provides information on pedology and mapping of ravines and gullies; 3. Geological Service of Brazil (CPRM) 

through the Carta Geológica Folha Pimenteiras - SD 20-X-D with information on outcrops, structures, and 

lithologies; 4. LANDSAT-8 with data from scene 230/69 on May 22, 2020. The bands used were B4, B5, B10, and 

B11, with spatial resolution of 30 meters. 

2.2.2. Erosion inventory 

The survey was carried out in July 2020 with the aid of a PHANTOM 4 (DJI) Unmanned Aircraft System 

(UAS), using a regular sampling pattern of 2 km x 2 km, the spatial resolution of around 10 centimeters, aiming 

at uniformity in the selection of data and the most extensive possible coverage. The flights met Brazilian Civil 

Aviation Regulations (RBAC-e 94) regarding the safe operation of UAS. Images were complemented with 

information from PLANAFLORO/RO and Sentinel-2B orbital satellite images (July/2020) (Spatial resolution of 10 

meters).  

They were submitted to binomial distribution analysis. The selection criteria of the sampling points were 

visual and based on the indicators described by Guerra et al., (2014) and Guerra and Jorge (2014) for areas with 

erosive processes in Brazil, including widespread exposed soil patches, the appearance of roots on the surface; 

removal of organic surface horizons; stretches of laminar erosion; the presence of terracettes; and formation of 

ravines and gullies. 

Sites that widely or fully of these indicators were considered susceptible to erosion (coded as 1 or success); 

otherwise, susceptibility to erosion was considered minimal or negligible (encoded as 0 or failure). Thus, 50 

points with erosion were selected, and, to complete the dichotomous analysis, 50 points with no erosion were 

randomly created in ArcMap 10.5. 

2.2.3. Considerations of categorical variables 

For variables with more than two categories, it is essential to encode the explanatory variable, indicating it 

as a reference for the model. The categorical variables of the present analysis are ordinal, presenting ordering 

within each predictor, following the guidelines expressed in the literature regarding susceptibility to erosion. 

Classes with a value weight of 0 are the reference classes for the model and are significant when the null 

hypothesis (H0) is met, that is when there is no erosion. 

2.2.4. Susceptibility map 

For applying Binary Logistic Regression, the response variable (Y) assumed an erosional process's 

dichotomous condition (presence or absence). Thus, 70% of the data set was randomly selected for the training of 

the BLR model and 30% for the test. The training derived the coefficients (β) for each variable and the equation's 

constant (α). Finally, the coefficients and constant of the training data set were applied to the predictors within 

the test data set (corresponding to the remaining 30% of the sample units) to calculate the output value. 

The cutoff limit was 0.5 and served as the model's orientation between outputs 0 and 1. If the soil loss (Y=1) 

is more significant than the cutoff point (P(Y=1) > 0.5), the sample unit is classified as the presence of erosion and 

receives a code of 1; sample units with lower probability (P(y=1) < 0.5) were coded as 0, indicating an absence of 

erosion. Variables were introduced, ensuring all independent variables were placed in the same regression model 

in a single block and that parameter estimates were calculated for each block. 

The equations used to obtain the susceptibility map followed the proposal of Sarkar and Mishra (2018). 

According to the authors, the values of the variables for a given pixel {column c, row r} in the input datasets 

produce the value of the corresponding output pixel of susceptibility to soil erosion (S) from equation (1). 

 

                     𝑆{c,r}  =   
1

1 +  𝑒
−(𝛼+ 𝜑𝑐𝑜𝑛𝑡{𝑐,𝑟}  +  𝜑𝐿𝐼𝑇{𝑐,𝑟} +  𝜑𝑆𝑂𝐼𝐿{𝑐,𝑟}+ 𝜑𝑈𝑆𝐸{𝑐,𝑟})

 (1) 

 

α = constant; φ_cont = contribution of continuous variables in the equation; φ_LIT = contribution of the 

categorical variable 'LIT' in the equation; φ_SOIL = contribution of the categorical variable ‘SOIL’ in the 
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equation; φ_USE = contribution of the categorical variable ‘USE’ in the equation; {c, r} = the pixel in the scan at 

column 'c' and row 'r'. 

Adequacy of the model was determined with the Cox & Snell R2 and Nagelkerke R2 values (HAIR JÚNIOR, 

2009), in addition to the Hosmer-Lemeshow, Log Likelihood Value, and Wald tests (HAIR et al., 2005). The Cox 

& Snell R2 is comparable to a linear regression R2; Nagelkerke R2 resembles the Cox & Snell R2 as it is a version 

adapted to provide results between 0 and 1. In general, Cox & Snell and Nagelkerke's measure of R2 are analogs, 

as both evaluate the variation found in BLR. The difference is that Cox & Snell R2 is limited as it cannot reach the 

maximum value of 1 (HAIR et al., 2005). 

Log-Likelihood Value test (−2𝐿𝐿) is an indicator that verifies the adjustment of the estimate with the value −2 

times the logarithm of the likelihood value; the lower the value, the better the fit of the model, with 0 (zero) being 

the perfect estimate. Hosmer-Lemeshow test aims to evaluate the predictive validity of the logistic regression 

model. It is not based on the likelihood value but rather the actual value of the dependent variable. The function 

is to divide the number of observations into approximately ten classes and compare the expected with the 

observed frequencies to assess the significant differences between the classifications of the model and the 

observed reality. 

Finally, Wald test assesses the degree of significance of each coefficient of the model and verifies whether 

each estimated parameter is significantly different from zero. The test follows the Chi-square distribution and is 

obtained by comparing the maximum likelihood estimator 𝛽𝑖 with the estimation of its error. In addition, the 

Odds ratio (OR) was initially proposed to determine an event's probability. Range of OR is from 0 to infinity: A 

value of 1 = no association with the specified risk (that is, the event or disease is equally likely in the high- and 

low-risk groups); as the value of OR increases or decreases away from 1, the association grows increasingly more 

robust (CHEN et al., 2010). 

Was obtained using global accuracy calculated according to the following equations (2, 3, 4, and 5), 

according to Bragagnolo et al. (2020): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝  +   𝑇𝑛

𝑇𝑝  +  𝑇𝑛  +  𝐹𝑝  +  𝐹𝑛

 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝 

𝑇𝑝  +   𝐹𝑝

 (3) 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑇𝑝

𝑇𝑝  +   𝐹𝑛

 (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   
𝑉𝑝

𝑉𝑝  +   𝐹𝑝

 
(5) 

 

 

Tp is the true positive; Tn is the true negative; Fp is the false positive; and Fn is the false negative. Values 

close to 1 indicate better performance. 

Sensitivity and specificity of the model are expressed in the curve (Figure 3). The ROC curve is a graph of 

sensitivity versus specificity for the possible cutoff probability values (cutoff = 0.5), which signaled a satisfactory 

level of BLR performance with an AUC = 0.888.  
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Figure 3. ROC curve for the Logistic Regression Model. 

The software used in the mapping were ArcGIS 10.5 and SPSS Statistic 26.0.  

3. Results 

The parameters analyzed did not present multicollinearity. Values for maximum variance inflation factor 

(VIF) and minimum tolerance were 2.644 and 0.378, respectively, and meet the requirements for the linear VIF ≤ 

10 and tolerance coefficient ≥ 0.1 (CHEN et al., 2019; ARABAMERI et al., 2018) (Table 1).  

 

Table 1. Multicollinearity test between conditioning factors. 

Predictors 
Multicollinearity test  

Predictors 
Multicollinearity test 

Tolerance VIF  Tolerance VIF 

Elevation 0.688 1.520  USE 0.701 1.426 

Slope 0.401 2.494  NDVI 0.602 1.662 

ASP 0.686 1.457  DD 0.793 1.261 

CV 0.574 1.742  LIT 0.599 1.670 

CTI 0.378 2.644  SOIL 0.694 1.440 

SPI 0.526 1.901  ERO 0.730 1.540 

LD 0.534 1.872  LST 0.546 1.830 
ASP: aspect or orientation of the slope; CV: curvature of the slope; CTI: composite topographic index; SPI: stream power index; LD: lineament 

density; USE: Land Use and Occupation; NDVI: normalized difference vegetation index; DD: drainage density; LIT: lithology; SOIL: soil type; 

ERO: erosivity; LST: land surface temperature. 

 

Except for the predictors NDVI, erosivity, and LST, the Wald test (Table 2) found that the variables 

influencing erosion were insignificant for the regression model. Significance is a prerequisite for selecting the 

variables that must make up using the Stepwise method. 
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Table 2. Wald test of the Logistic Regression model. 

Preditor SD Wald df p-value Exp (β) 
95% C.I. Exp(β) 

Inferior Superior 

ELV 0.005 0.028 1 0.868 0.999 0.990 1.008 

SLP 0.052 0.298 1 0.585 1.02 0.930 1.138 

ASP 0.003 0.344 1 0.558 0.998 0.992 1.004 

CV 20.685 0.047 1 0.829 86.99 0.000 - 

CTI 0.243 0.001 1 0.977 0.993 0.616 1.600 

SPI 0.103 2.973 1 0.085 1.194 0.976 1.461 

LD 0.023 0.394 1 0.530 0.986 0.943 1.031 

NDVI 24.748 5.122 1 0.024 0.00 0.00 .001 

DD 0.014 2.065 1 0.151 1.020 0.993 1.048 

LIT  7.475 4 0.113    

LIT(1) 17898.4 0.00 1 0.999 - 0.00 - 

LIT(2) 34892.7 0.00 1 1.000 - 0.00 - 

LIT(3) 1.214 3.315 1 0.069 9.113 0.845 - 

LIT(4) 2.431 5.017 1 0.025 0.004 0.00 0.506 

USE  1.148 3 0.766    

USE(1) 1.297 1.148 1 0.284 4.014 0.316 51.024 

USE(2) 24442.1 0.00 1 0.999 - 0.00 - 

USE(3) 50126 0.00 1 1.000 - 0.00 - 

SOIL  1.713 4 0.788    

SOIL(1) 1.858 1.713 1 0.191 11.38 0.298 434.601 

SOIL(2) 25312.1 0.00 1 0.999 0.00 0.00 - 

SOIL(3) 0.937 0.019 1 0.891 1.138 0.181 7.138 

SOIL(4) 34892.7 0.00 1 0.999 0.00 0.00 - 

ERO 0.002 8.356 1 0.004 1.005 1.001 1.008 

LST 0.523 6.576 1 0.010 3.82 1.372 10.641 

Const. 20.134 10.891 1 <.001 0.00   

SD: standard deviation; df: degrees of freedom; p-value < 0.05; CI: confidence interval; Odds ratio values were excessively high depending on 

the nature of the calculation and were therefore not displayed in the table; ELV: elevation; SLP: slope; ASP: aspect or orientation of the slope; 

CV: curvature of the slope; CTI: composite topographic index; SPI: stream power index; DL: lineament density; USE: use and occupation of 

soil; NDVI: normalized difference vegetation index; DD: drainage density; LIT: lithology; SOIL: soil type; ERO: erosivity; LST: land surface 

temperature. 

 

Pseudo-R2 parameters (Cox & Snell and Nagelkerke), Log-likelihood -2 (-2LL), and the Hosmer-Lemeshow 

test verified the model. Table 3 presents the fitness measures of the regression model. 

  

Table 3. Statistical summary of the Logistic Regression model. 

Log likelihood -2 (-2LL) 

Pseudo R2  Hosmer-Lemeshow Test 

Cox & Snell R2 Nagelkerke R2  Chi-square  df 
p-

value 

81.783a 0.434 0.578  22.474 8 0.004 

df: degrees of freedom; p-value: significance p < 0.05; ª - Final estimate with 20 iterations. 

 

Accuracy of the model given by the confusion matrix reached an overall accuracy of 0.77 (Table 4). Matrix 

indicates the hit-and-miss percentage of the model for the two possible answers. Thus, the model correctly 

classified 0.80 of the 50 sample units with erosion and 0.74 of the 50 samples without erosion. 

 

 

 

 



Revista Brasileira de Geomorfologia, v. 24, n. 4; e2314; 2023 10 de 19 

Revista Brasileira de Geomorfologia. 2023, v.24 n.4; e2314; DOI: http://dx.doi.org/10.20502/rbg.v24i4.2314    https://rbgeomorfologia.org.br 

Table 4. Logistic Regression Confusion Matrix. 

 Observed 

Predicted 

Response 
Classification correct 

0 1 

Step 1 
Response 

0 37 13 0.74 

1 10 40 0.80 

      Global    0.77 

 

Table 5 shows the values of the coefficients for the selected predictors, including the value of the constant (α) 

of the equation. 

 Table 5. Coefficients (β) of the BLR model equation 

Pred.(x) β(x) 
Categorical variables 

SOIL β(SOIL) USE β(USE) LIT β(LIT) 

α -66.446 0 - 0 - 0 - 

ELV -0.001 1 2.432 1 1.390 1 22.628 

SLP 0.028 2 -44.430 2 28.093 2 21.369 

ASP -0.002 3 0.129 3 21.859 3 2.210 

CV 4.466 4 -23.007   4 -5.445 

CTI -0.007       

SPI 0.177       

LD -0.014       

NDVI -56.011       

DD 0.020       

ERO 0.005       

LST 1.340       

ELV: elevation; SLP: slope; ASP: aspect or orientation of the slope; CV: curvature of the slope; CTI: composite topographic 

index; SPI: stream power index; LD: lineament density; USE: use and occupation of soil; NDVI: normalized difference 

vegetation index; DD: drainage density; LIT: lithology; SOIL: soil type; ERO: erosivity; LST: land surface temperature. 
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Figure 4. Soil erosion susceptibility map of the Sete Voltas sub-basin - Regression Model. 

The susceptible areas are those classified as moderate, high, and very high, representing 57.69% of the area 

(Table 7). 

Table 7. Erosion susceptibility class and area based on the BLR model 

Erosion  BLR Model 

Susceptibility Class Num. of pixels % of area 

Very Low 67085 19.44 

Low 78779 22.83 

Moderate 121053 35.09 

High 73153 21.20 

Very High 4856 1.40 

Total 344926 100 
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Figure 5. Aerial photographs taken with the UAS: a) areas with terracettes and trails formed by cattle 

trampling; b) presence of erosion in first-order rivers; c) erosion near the rivers. Source: Author (July, 

2020). 

4. Discussion 

Choice of input parameters constitutes the subjective criterion with the most significant impact on modeling 

studies, as they are directly or indirectly involved in the manifestation of the erosion event and have the power to 

impact the mapping results. In the literature, several studies point out that the number of predictive parameters 

in modeling erosion events does not follow a specific pattern. Instead, they are determined following several 

other aspects guided by the perspective of the researcher and the selected landscape. However, it is possible to 

observe that some parameters are considered typical in modeling processes, such as NDVI and terrain slope 

(CAN et al., 2017; SHAHRI et al., 2019; GOES-PEÑAFIEL; HERNANDEZ-ROJAS, 2021). 

The NDVI index is crucial because it reflects changes in the Earth's surface (DING et al., 2017). Removing 

vegetation reduces soil moisture through exposure to radiant energy, making it dry, affecting the stability of 

aggregates, shear strength (XUE et al., 2011), and the decomposition of organic matter. The NDVI analysis 

reveals that areas with a more significant presence of vegetation present lower susceptibilities, and areas with 

less vegetation had a higher frequency indicating areas susceptible to soil loss. A similar observation was 

described by Rahmati et al., (2017). Terrain slope affects with increasing slope gradient, where the shear forces 

applied by the runoff flow velocity increase, and these factors tend to increase erosion, by increasing the 

detachment of soil particles. (GUERRA et al. 2014). 

4.1. Application of Logistic Regression 

The first step of the analysis was the multicollinearity test. This analysis has no multicollinearity among the 

conditioning factors as they meet the required VIF and tolerance requirements. Thus, there is a strong indication 

that the selected set is coherent and capable of providing robustness to the model. 

Wald tests should be taken with caution because when the regression coefficient (β) is significant (Table 2), 

the standard error tends to become inflamed, resulting in an underestimation of the Wald statistic (MENARD, 

1995). Furthermore, the inflation of the standard error increases the probability that the predictor will be rejected 

when it contributes to the model. According to Field (2009), this increases the possibility of making Type II 

errors, which occur when the result shows no effect on the sample while there is an effect. 

The odds ratio (OR) of the event of interest presented values with different behaviors for the pre-established 

set. The predictors as elevation, slope orientation, CTI, and lineament density have OR < 1 (Exp (β) < 1.000 - Table 

2). Thus, for the RLB model, an increase in value for this set of variables would decrease the chances of the 

output resulting in 'success.' In contrast, increasing the other variables' value would increase the probability of 

soil erosion susceptibility. 

A reduction in the probabilities of the predictors causing a positive event - '1' - would imply possible 

rejection in the composition of the predictor table. This occurs because the lowest p-value is compared with the 

a b c 
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previously chosen p-value (p-value = 0.05). If the lowest p-value is less than the chosen p-value, the covariate is 

included in the model; otherwise, the final is the null model. 

Variables curvature of the slope, NDVI, and LST showed the highest OR values. An increment of one unit in 

the degree of slope curvature would increase the chances of erosion by four times. Meanwhile, an increase of 1°C 

in the LST would increase the erosive possibility by at least two times. 

The NDVI was high due to the nature of the calculation, so its value is not shown in Table 3. High values 

imply significance within the RLB model. When increased by one unit, the NDVI values considerably increase 

the probabilities of erosion in the experimental area. NDVI predictor is included in most homologous models 

across various climatic contexts. 

Some variables have no effect on the model; an increase of one unit in the variable's value or a reduction of 

one unit would not result in a greater or lesser chance of erosion occurring. However, in general, the further the 

coefficient is from one (1), regardless of direction, the more significant the impact of a given independent variable 

on the probability of the event occurring. 

This applies to the variables slope, erosivity, and drainage density with a value of Exp (β) = 1.000. The 

absence of effects in the model would also exclude the predictor from the final set of independent variables. 

However, covariates indicated as not significant can become significant in the presence of other covariates, 

requiring further analysis of the impact of their inclusion or exclusion from the RLB model, as discussed by 

Chowdhury and Turin (2020). 

Regarding the categorical variables, OR values are compared concerning the reference class. In the case of 

lithology, the reference class was the lithostratigraphic unit Granitoids, which have more excellent resistance to 

weathering. For the independent variable soil type, the reference class was Latosols because they present greater 

resistance to the movement of particles as a function of their physicochemical characteristics. Finally, for the 

variable land use and occupancy, the reference class was defined as native vegetation, which offers protection 

against the transportation of particles. 

Statistically, the OR for lithology indicates that in the LIT(1) class, composed predominantly of quartz-

sandstone rocks, the chance of erosion is significantly high, similar to the LIT(2) class with bimodal sandstones. 

LIT (3), immature polymictic conglomerates, in turn, have a nine (9) times greater chance of erosion. However, 

the class of undifferentiated sedimentary cover and alluvial deposits, LIT(4), with a predominance of sand, silt, 

and clay, presented OR < 1, indicating a decreased chance of erosion when compared to the reference class. 

Regarding soil type, the OR indicates that the class SOIL(1), Gleysols, is 11 times more likely to experience 

erosion with Latosols; SOIL(3), Ultisols, are 1.3 times more prone to erosion, while SOIL(2), Cambisols, and 

SOIL(4), Neosols, have an OR < 1 indicating a lower probability of erosion as the OR for the event to occur is 

lower with the reference class. 

For the predictor of land use and occupancy, the OR suggests that agriculture, USE(2), and water resources, 

USE(3), are critical for the probability of erosion due to the high values of Exp (β). Pasture, USE(1), in turn, is four 

times more likely to experience erosive events when compared to the reference class. 

Values obtained for log -2 in soil erosion susceptibility modeling studies should be mentioned in the model 

fitness analysis. The absence of information about regression models, such as the procedure for selecting 

variables, the type of model used, and how the model's fit is adjusted, are all issues indicated by Bagley et al., 

(2001). Nevertheless, these flaws persist in many scientific studies. 

Nagelkerke coefficient of determination indicates that 57.8% of the variation that occurred in the log of the 

OR can be explained by the set of independent variables. Cox & Snell R2 predicts that 43.8% of the variation in 

the dependent variables of susceptibility to erosion is explained by this model. Pseudo values R2 (Cox & Snell 

and Nagelkerke) presented the same results for the coefficient of determination but were based on different 

calculations. 

The ROC curve indicates that the greater the area under the curve (AUC), the more capable the model is of 

identifying true positives while minimizing the number or percentage of false positives. The AUC describes the 

performance of the classification model and illustrates the diagnostic capacity of a binary classifier whose 

acceptable value varies between 0.5 and 1.0 (RAHMATI et al., 2016). The AUC of the model was 0.888 (88.8%), 

which is satisfactory to accept the model and its subsequent application in mapping susceptibility to soil erosion. 

Several authors have used AUC estimates as parameters to accept model performance. For example, 

Sholagberu et al., (2019) obtained an estimated AUC value of 0.887 for multivariate logistic regression analysis, 
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indicating the model's excellent performance in evaluating susceptibility to erosion. Same evaluation was applied 

by Arabameri et al., (2018) with an AUC of 0.802 and Chen, Pourghasemi and Zhao (2016) with an AUC of 0.836. 

When analyzing the causal factors in a soil erosion susceptibility study in the state of Pahang, Malaysia, the 

map produced by Sholagberu et al., (2019) obtained a predictive accuracy of the model in the order of 81.9%, 

indicating that on average, the map was accurate and acceptable and could be used by planners and decision-

makers for sustainable development. However, the author suggested that additional studies should be 

implemented because the accuracy of the mapping can be affected by the quality and number of variables. 

RLB models were also applied to identify areas of ravine erosion. For example, Arabameri et al., (2018) 

verified soil loss in northeastern Semnan province, Iran. They obtained an index of 80.2%, indicating that the 

results can contribute to sustainable development in this area, helping minimize soil loss's economic and 

environmental impacts. Similarly, Arabameri et al., (2019) in Yazd province, Iran, obtained an index of 83.4% 

with logistic regression. Results show that model, slope, TPI, and elevation were the key factors generating 

gullying in the study area. 

Chen et al., (2017), when mapping susceptibility in Shaanxi province, China, achieved more than 77% 

accuracy. Raja et al., (2016) used logistic regression to explore the probable future distribution of landslides in the 

region in Turkey, reaching accuracy values close to 80%. Authors concluded that logistic regression could be an 

essential means by which landslides in the Black Sea region can be assessed. The parameters selected included 

slope angle, aspect, lithology, TWI, river proximity, and relative relief. According to the authors, the study 

emphasized the importance of aspect and lithology, which leads to the conclusion that slope is a significant factor 

in determining landslide activity. 

Conoscenti et al., (2013) employed RLB with an accuracy of approximately 80% to explore susceptibility in 

the north-central region of Sicily, Italy. The attributes described the variability of lithology, land use, topography, 

and road position. In addition, they were able to determine the spatial distribution of the gullies and develop a 

reliable map of susceptibility to ravine erosion. 

4.2. Mapping of susceptibility 

When analyzing the susceptibility map developed herein (Figure 3), we can see a belt of low susceptibility to 

erosion in the southeast region of the sub-basin, which is associated with the maintenance of native forest cover. 

Low erosion risk is also observed in the extreme southwest of the sub-basin. Lowland areas experience flooding 

at certain times of the year and are unsuitable for agricultural activities. In adjacent regions, agricultural practices 

increase susceptibility to soil loss, especially in the first year of cultivation, due to the exposure of soil to erosion 

from rainfall. 

At the northern end of the sub-basin, susceptibility to erosion is related to the sites where Cerrado 

vegetation is being converted to other land uses or grazing areas in transition zones between the Ombrophilous 

forest and Cerrado vegetation. These sandy soils, classified as Neosols, are located on the edge of the Parecis 

Plateau, strongly influenced by weathering agents. 

Neosols are naturally susceptible to soil loss due to hydric events. Fonseca (2017), when evaluating erosion 

conditions in Quartzarenic Neosols in the municipality of Colorado do Oeste, found that the predisposition to 

sediment loss stems from the predominance of very coarse and coarse sand, high values of soil density, low 

porosity, compaction related to trampling by cattle, and an increase in the average penetration resistance, 

particularly in the first 10 centimeters. 

The central area of the sub-basin and the region close to the urban core have moderate susceptibility. The 

greatest mapped susceptibilities are in areas with degraded pastures and lowland areas close to water bodies 

(Figure 4). Fonseca, Locatelli, and Silva Filho (2018), when classifying the stages of degradation of pastures in the 

municipality of Colorado do Oeste, observed that areas that present some degree of degradation have similar 

characteristics, such as a variety of the type of forage (braquiarão; Brachiaria brizantha), low forage height, limited 

plant population per m2, presence of weeds, high grazing pressure, and poor pasture formation and 

management. 

Erosion surrounding drainage networks is predominant in the study area. The rivers in the sub-basin are 

mostly first-order channels that are fragile, intermittent, and highly susceptible to anthropogenic pressure 
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(Figure 4). In Figure 4, we can see an absence of vegetation in lowland areas and along rivers. The immediate 

consequence is a disequilibrium in the soil-landscape relationship and the disappearance of some waterways. 

When analyzing the morphometry of the sub-basins in the municipality, Fonseca and Silva Filho (2017) 

identified that the first-order channels almost always flow directly to the main river, have limited flow, with little 

or no riparian forest, and may cease to exist due to inadequate management of agricultural activities. Therefore, 

mapping susceptibility to erosion is the first and most crucial step in managing the effects of soil loss to achieve 

sustainable development (ARABEMARI et al., 2019). Sustainable management practices, considering the 

challenges of land use and occupation, require indexes of quantification of soil erosion, spatial distribution, and 

identification of critical areas for sediment transportation. 

Land use and occupation is an essential indicator of erosion potential, as it is related to resistance to particle 

removal due to the levels of organic matter, protection from the direct impact of rainfall, and more significant 

water infiltration into the soil (BERTONI; LOMBARDI NETO, 2008). In addition, the soil cover is highly 

significant in preventing and controlling erosion and the aggravation of erosive processes. It can compromise 

water infiltration, damage the soil structure, and lead to sediment loss (PERUSI; OAK, 2008). 

Damage to the soil includes animal trails near watercourses that increase soil density, compacting the 

surface and intensifying the speed of surface water runoff. Animal trampling has direct and indirect effects and 

can impact several aspects of the geomorphological system in both the high and lowlands (TOMAS; DAYS, 2009). 

However, a reduction in the area available for productive activities (Figure 4) can have an economic impact on 

producers because most of the rural properties in the sub-basin are small-scale (up to four fiscal modules), that 

practice intensive livestock production and do not use pasture maintenance and management techniques. 

5. Conclusions 

The soil erosion susceptibility map is essential to predict areas susceptible. Soil erosion in the Amazon 

generates significant negative impacts on the environment with direct consequences on local production due to 

the loss of productive soil and reduced areas suitable for cultivation, affecting ecological stability and reducing 

soil quality and quantity. Therefore, in the present study, the statistical principle of Logistic Regression was 

applied in the mapping of areas susceptible to erosion using 14 conditions, including Altitude, Slope, Aspect or 

Orientation of the Slope, Curvature of the Slope, Composite Topographic Index, Index of Potency of the Flow, 

Lineament Density, Vegetation Index by Normalized Difference, Drainage Density, Lithology, Soil Type, Land 

Use and Land Coverage, Erosivity, and Land Surface Temperature. Attached is an erosion inventory map of the 

entire basin prepared using high-resolution orbital imagery and field survey with remotely piloted aircraft. 

Results show that the model could identify the existing relationships between the conditioning factors and 

generate susceptibility maps consistent with the local reality. The factors NDVI, erosivity, and land surface 

temperature showed the most significant effects on the RLB model to identify potential areas for soil loss. The 

areas susceptible to erosion were classified as moderate, high, and very high susceptibility and represented 

57.71% of the study area.  

The application of spatial modeling can promote more adequate and effective land use planning, providing 

a preliminary assessment of large areas. Strategies such as vegetation revitalization and management of 

agricultural activities should be implemented to prevent and reduce the destructive effects of erosion rates. 

Further studies should be conducted that carefully evaluate the choice of input parameters, verifying their 

influence on triggering erosion, the associated factors, and their impacts on modeling processes. An excess or 

lack of parameters may compromise the techniques' quality. 

In addition, studies with a smaller scope should be applied to explore spatial modeling techniques better. 

For example, analyses could evaluate the performance of modeling techniques in contexts with variable climate, 

geomorphology, and hydrology; compare models employed in the same context; and introduce new approaches, 

such as hybrid models, to overcome possible flaws detected previously studied models or expand the accuracy of 

classifications. 
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